

Sustainable Oyster Aquaculture, Water Quality Improvement, and Ecosystem Service Value Potential in Maryland Chesapeake Bay

Matt Parker, University of Maryland Extension Suzanne Bricker, NOAA National Centers for Coastal Ocean Science

National Shellfish Association 113th Annual Meeting (virtual only) Session #1 - Shellfish Aquaculture Business & Economics 8:30am; March 22, 2021

- US imports >85% of seafood, half of that is farmed
- US seafood deficit is > \$16 billion y⁻¹
- 2011 NOAA *National Aquaculture Policies* promote sustainable domestic aquaculture
- 2011 National Shellfish Initiative to increase shellfish aquaculture, water quality benefits also recognized*

*65% of US estuaries have moderate to high impacts of nutrients

Chesapeake Bay Program Approved Harvested Oyster Tissue for Nutrient BMP Credits

TEN

- Derived from oyster growth data from Chesapeake Bay locations.
- Determined five size class ranges based on shell height.

BMP Name	Lbs N Reduced/ <u>million</u> Oysters Harvested	Lbs P Reduced/ <u>million</u> Oysters Harvested
Diploid Oyster Aquaculture 2.25 Inch	110	22
Diploid Oyster Aquaculture 3.0 Inch	198	22
Diploid Oyster Aquaculture 4.0 Inch	331	44
Diploid Oyster Aquaculture 5.0 Inch	485	44
Diploid Oyster Aquaculture ≥ 5.5 Inch	683	66
Triploid Oyster Aquaculture 2.25 Inch	132	22
Triploid Oyster Aquaculture 3.0 Inch	287	22
Triploid Oyster Aquaculture 4.0 Inch	573	66
Triploid Oyster Aquaculture 5.0 Inch	970	110
Triploid Oyster Aquaculture ≥ 5.5 Inch	1,477	154

Chesapeake Region - Harvested tissue now approved to fulfil required nutrient reductions.
Mashpee MA oysters, clams (Mashpee CCMP, 2015), Danish mussel mitigation farms (Taylor et al., 2019)

What is the value of the nutrient removal service? How do we estimate that?

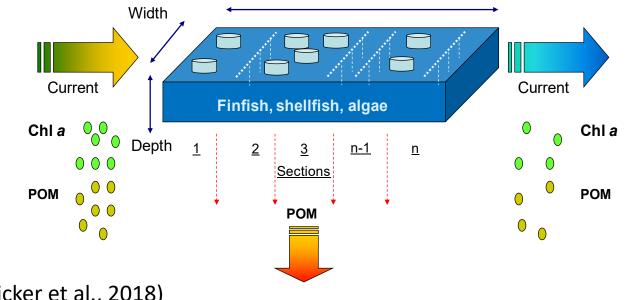
Estimated as an avoided or replacement cost - costs to remove nutrients via an alternative management measure used to assign value

VA Chesapeake Bay Alternative Management	\$/kg N removed
Waste Water Treatment Plant ¹	\$35 - \$104
Agricultural BMP ^{1,2}	\$7 - \$1034
Urban BMP ^{1,2}	\$66 - \$4873
VA Nutrient Credit Exch. Assoc. 2018 Sales Price ²	\$8.33

¹Stephenson et al. 2010. Evaluation of nutrient nonpoint offset trading in VA. Water Resources Research.
²Jones et al. 2010. How nutrient trading could help restore Chesapeake Bay. World Resource Institute.
³Virginia Department of Environmental Quality. 2017. Exchange Compliance Plan 2017 Annual Update.

An example of potential value for legal harvest size of diploid and triploid oysters

BMP Name	Lbs N Reduced /million		Based /WTP High	Value B Ag E Low			Based an BMP High	VA Nutrient Credit Exchange Assoc. 2018 Sales Price
	Oysters Harvested		- ingri		/ millio			sted
Diploid Oyster Aquaculture 3.0 Inch	198	\$3	\$9	<\$1	\$93	\$6	\$439	<\$1
Triploid Oyster Aquaculture 3.0 Inch	287	\$5	\$14	\$1	\$135	\$9	\$636	\$1

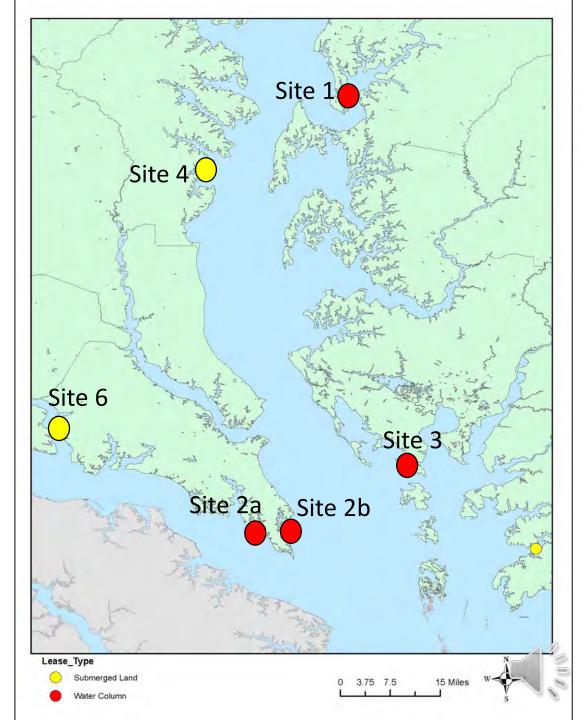

Represents potential payment to growers for water cleaning ecosystem service provided by cultivated oysters – low end of the range is the likeliest payment.

Farm Aquaculture Resource Management (FARM) Model

EXTEL

- K101E100 A local-scale carrying capacity and environmental effects model
 - Accounts for food conditions, shellfish eco-physiological characteristics, and farming practices
 - Estimates production potential, farm optimization (configuration, stocking density), environmental effects (i.e. nitrogen removal)

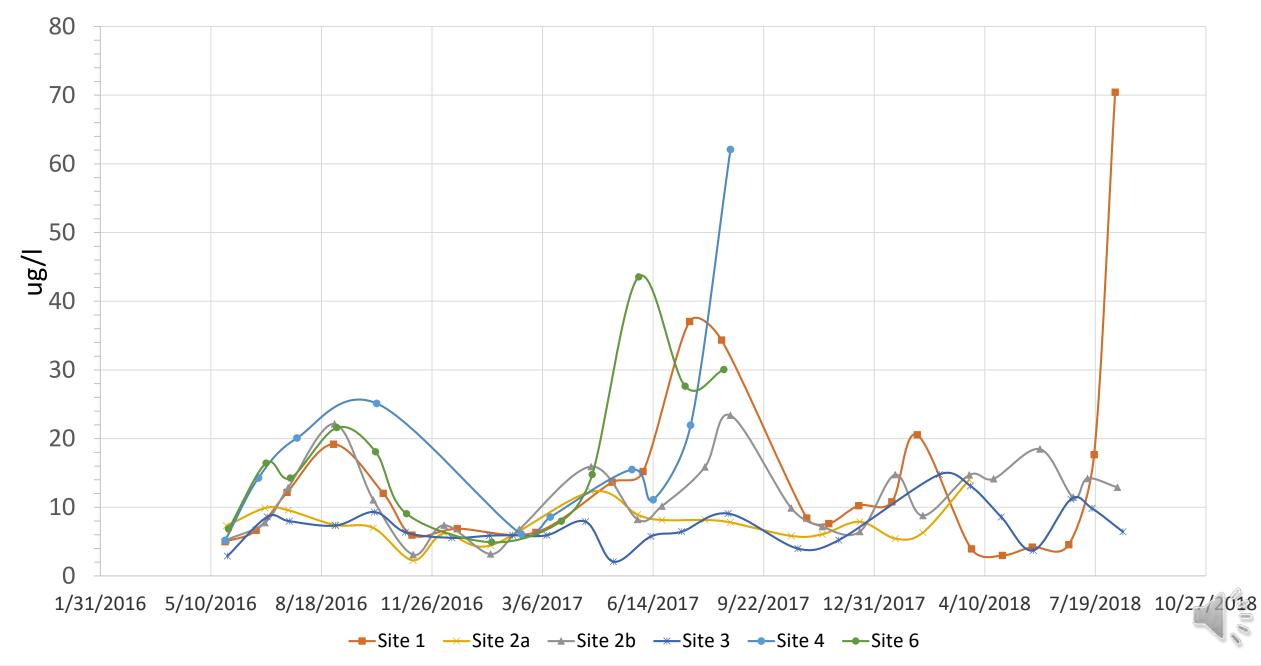
(Ferreira et al., 2007; Bricker et al., 2018)


Ţ

OPerative

Field work and FARM Model Estimate of Nutrient Reduction

- Collected water and oyster samples May 2016 – Aug 2018
- Input data into FARM Model
- Estimate nutrient reduction due to oyster feeding
- Includes tissue and shell



Water Parameters Measured

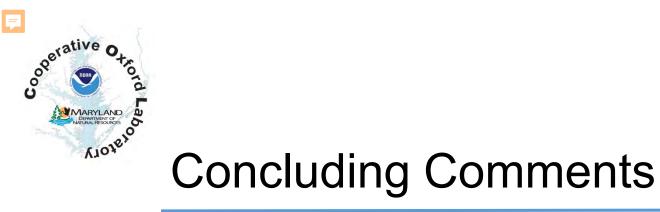
- Lat/Long
- Dissolved Oxygen
- Salinity
- Chlorophyll
- Total Suspended Solids
- Total Volatile Solids
- Ammonia
- Nitrate/Nitrite

Total Chlorophyll

Nutrient Reduction Comparison:

FARM Model and Expert BMP Panel (Tissue only)

		FARM Model Estimate	BMP Estimate of
		of Nitrogen Removal	Nitrogen Removal
Location	Culture Type	(kg/yr) tissue only	(kg/yr)
Site 1	bottom cage triploid	182	50
Site 2a	floating cage triploid	710	299
Site 2b	floating cage triploid	1372	722
Site 3	bottom cage triploid	399	133
Site 4	bottom culture diploid	859	46
Site 6	bottom culture diploid	1200	93



Comparison of Potential Revenue for Nutrient Reduction: Farm Model and Expert BMP Panel

Potential Revenue based on avoided costs for each farm for FARM Model production estimates \$1000s / year (tissue only)

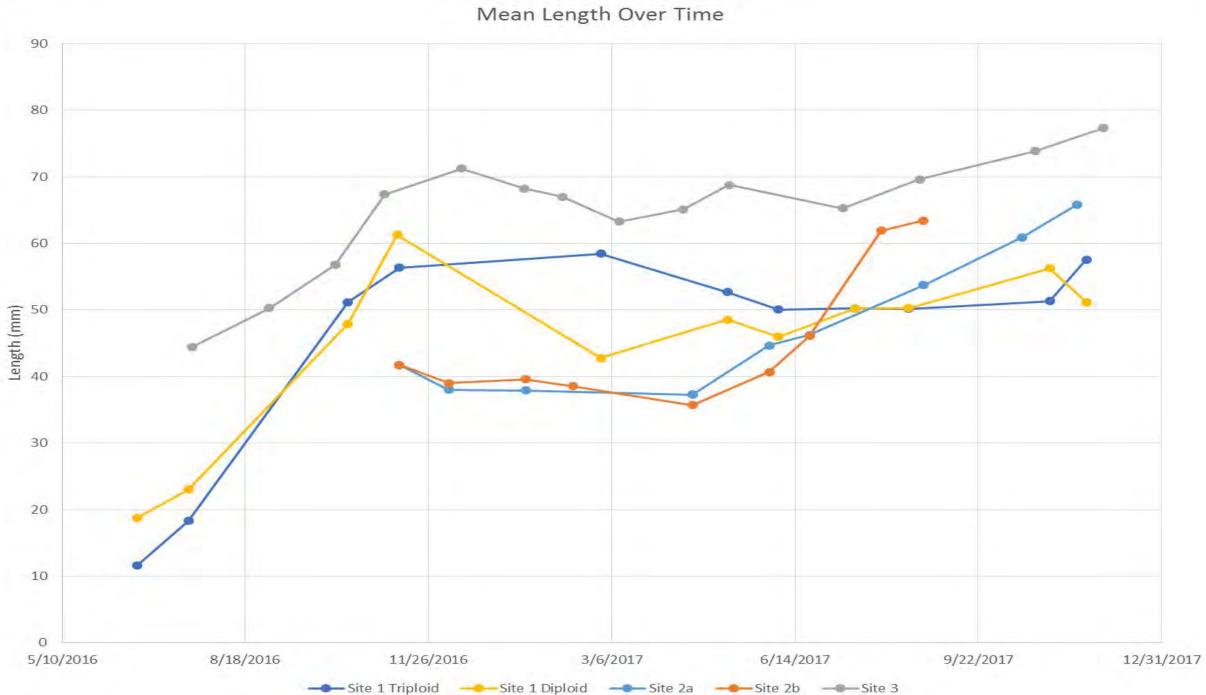
		3 inch Triploid Oysters				3 inch Diploid Oysters	
	Alternative Management	Site 1	Site 2a	Site 2b	Site 3	Site 4	Site 6
	WWTP Minimum	\$6	\$25	\$48	\$14	\$30	\$42
	WWTP Maximum	\$19	\$74	\$143	\$42	\$89	\$125
Farm	Ag BMP Minimum	\$1	\$5	\$9	\$3	\$6	\$9
Model	Ag BMP Maximum	\$189	\$734	\$1,419	\$413	\$888	\$1,241
	Urban BMP Minimum	\$12	\$47	\$91	\$27	\$57	\$79
	Urban BMP Maximum	\$888	\$3,460	\$6,687	\$1,944	\$4187	\$5,850
	VNCEA 2018	\$2	\$6	\$12	\$3	\$7	\$10

	WWTP Minimum	\$2	\$10	\$25	\$5	\$2	\$3
	WWTP Maximum	\$5	\$31	\$75	\$14	\$4.8	\$10
DUD	Ag BMP Minimum	<\$1	\$2	\$5	\$1	<\$1	\$1
BMP Estimate	Ag BMP Maximum	\$52	\$309	\$747	\$138	\$48	\$96
Estimate	Urban BMP Minimum	\$3	\$20	\$48	\$9	\$3	\$6
	Urban BMP Maximum	\$244	\$1,457	\$3,518	\$648	\$224	\$453
	VNCEA 2018	<\$1	\$3	\$6	\$1	<\$1	\$1

- Incorporation of aquaculture science into resource management
- Optimistic results for water quality improvement AND potential revenue for oyster farms nutrient reductions
 - -> Payment already made to 2 MD oyster growers!! (Wheeler; May 2020)
- FARM Model is useful tool, needs refinement for Chesapeake Bay
 - -> Project investigating FARM N removal in Greenwich Bay, CT
- Transferrable approach to other waterbodies that require nutrient removal and also support oyster aquaculture

Questions?

Dr. Matt Parker Aquaculture Business Specialist University of Maryland Extension Prince George's County Office 6707 Groveton Drive Clinton, MD 20735


(301) 868-8780 ext 428 (301) 599-6714 (fax) <u>mparke11@umd.edu</u> <u>http://extension.umd.edu/aquaculture</u> Dr. Suzanne B. Bricker Manager, NOAA's National Estuarine Eutrophication Assessment National Centers for Coastal Ocean Science Cooperative Oxford Lab 1305 East West Highway, Floor 9 Silver Spring, MD 20910

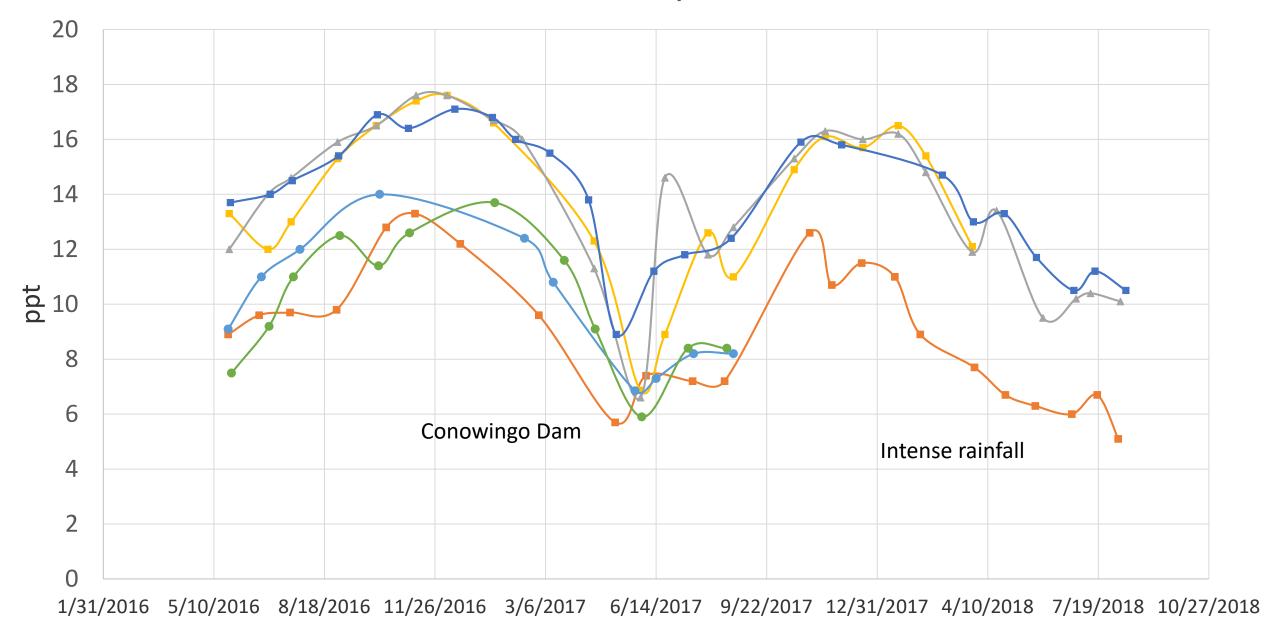
(301) 467-9089 suzanne.bricker@noaa.gov https://coastalscience.noaa.gov/

Slides 15 – 23 can be used in a longer presentation – left here for completeness.

Ţ

Oyster Measurements

• Fresh weight


Coperative O+-

MARYLAND

K101E100

- Wet tissue weight
- Wet shell weight
- Volume of liquid in oyster
- Dry tissue weight
- Dry shell weight

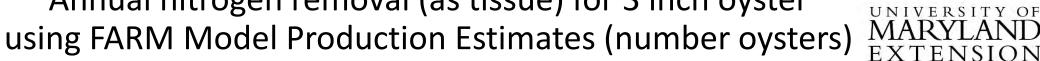
Salinity

----Site 1 ----Site 2a ----Site 3 ----Site 4 ----Site 6

FARM model results for MD Chesapeake Bay farms Nitrogen removal (as tissue and shell from 3 inch oyster) normalized to <u>tissue only</u> per Cornwell et al 2016:

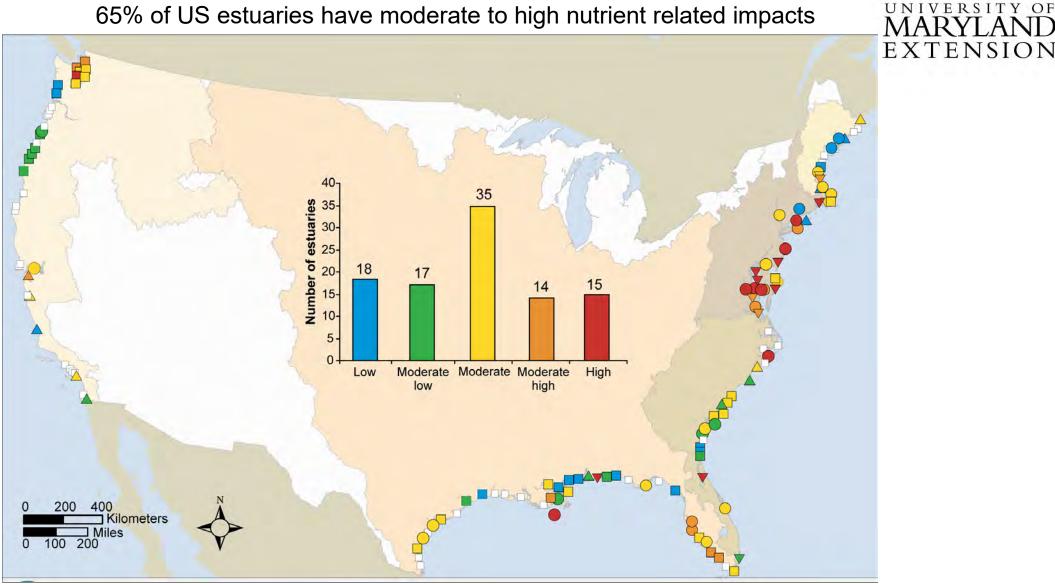
N is 72% triploid cage oyster, 47% diploid bottom oyster

11-			
Location	Culture Type	N removed (kg/acre/yr)	Total N removed (kg/yr)
Site 1	bottom cage triploid	37	182
Site 2a	floating cage triploid	222	710
Site 2b	floating cage triploid	63	1372
Site 3	bottom cage triploid	20	399
Site 4	bottom culture diploid	215	859
Site 6	bottom culture diploid	171	1200



Expert BMP Panel results for MD Chesapeake Bay farms Annual nitrogen removal (as tissue) for 3 inch oyster

¥0{}			LATENSIOI
Location	Culture Type	N removed (kg/acre/yr)	Total N removed (kg/yr)
Site 1	bottom cage triploid	10	50
Site 2a	floating cage triploid	93	299
Site 2b	floating cage triploid	33	722
Site 3	bottom cage triploid	7	133
Site 4	bottom culture diploid	11	46
Site 6	bottom culture diploid	13	93



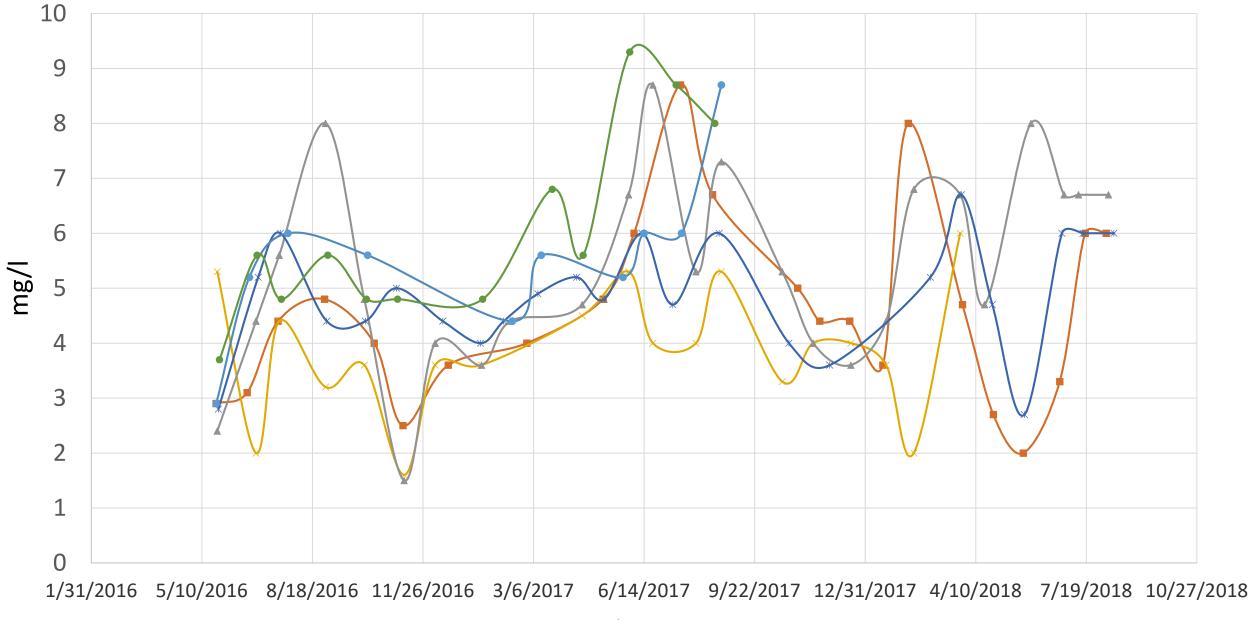
Eutrophic Condition: US

http://www.eutro.us

http://www.eutro.org/register

UNIVERSITY of MARYLANE EASTERN SHORE

UNIVERSITY OF



Chesapeake Bay Oyster Expert Panel

- Nutrient reduction via harvested aquaculture oyster tissue approved as a BMP by Chesapeake Bay Program in Dec 2016.
- Panel continues to examine nutrient reduction effectiveness for aquaculture oyster shell, enhanced denitrification, and restoration practices

Total Volatile Solids

---Site 1 ---Site 2a ---Site 2b ---Site 3 ---Site 4 ---Site 6

Next steps

- Continue to refine model for Chesapeake Bay
- Evaluate what it would take to compensate farms for nutrient reductions (complete in 2018)
- Economic Evaluation of MD Oyster Industry (complete in 2018)
- BMP Expert Panel to continue to review science for additional BMP's
 - Shell, denitrification, etc